Full anterior segment biometry with extended imaging range spectral domain optical coherence tomography at 1340 nm.
نویسندگان
چکیده
We demonstrate an extended-imaging-range anterior-segment optical coherence tomography (eAS-OCT) system for the biometric assessment of full AS in human eye. This newly developed eAS-OCT operating at 1340-nm wavelength band is simultaneously capable of an imaging speed of 120 kHz A-line scan rate, an axial resolution of 7.2 μm, and an extended imaging range of up to 16 mm in air. Imaging results from three healthy subjects and one subject with a narrow-angle demonstrate the instrument's utility. With this system, it can provide anatomical dimensions of AS, including central corneal thickness, anterior chamber width, anterior chamber depth, crystalline lens vault, crystalline lens thickness, angle opening distance (AOD500/AOD750), and the area described by the trabecular-iris space (TISA500/TISA750) at 500/750 μm. We also use eAS-OCT to image and quantify dynamic functional changes of the AS in response to a light stimulus that induces physiological pupillary changes as well as accommodative efforts that induce lens changes. The results show that the described eAS-OCT is able to provide full anatomical biometry for AS and is useful for the studies where the dynamic response of AS compartment to certain stimulus is required.
منابع مشابه
Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation
We demonstrated a novel approach of imaging the anterior segment including the ciliary muscle using combined and synchronized two spectral domain optical coherence tomography devices (SD-OCT). In one SD-OCT, a Complementary Metal-Oxide-Semiconductor Transistor (CMOS) camera and an alternating reference arm was used to image the anterior segment from the cornea to the lens. Another SD-OCT for im...
متن کاملFull OCT anterior segment biometry: an application in cataract surgery
In vivo three-dimensional (3-D) anterior segment biometry before and after cataract surgery was analyzed by using custom high-resolution high-speed anterior segment spectral domain Optical Coherence Tomography (OCT). The system was provided with custom algorithms for denoising, segmentation, full distortion correction (fan and optical) and merging of the anterior segment volumes (cornea, iris, ...
متن کاملDual-channel spectral-domain optical-coherence tomography system based on 3 × 3 fiber coupler for extended imaging range.
We have demonstrated a dual-channel multiplexing spectral-domain optical-coherence tomography (SD-OCT) system based on a 3×3 fiber coupler for extended imaging range of whole human eye depth, with a single light source and spectrometer. OCT images of anterior segments of a human eye were sequentially performed and constructed to demonstrate an extended depth range as large as 15 mm in air. A go...
متن کاملExtended coherence length megahertz FDML and its application for anterior segment imaging
We present a 1300 nm Fourier domain mode locked (FDML) laser for optical coherence tomography (OCT) that combines both, a high 1.6 MHz wavelength sweep rate and an ultra-long instantaneous coherence length for rapid volumetric deep field imaging. By reducing the dispersion in the fiber delay line of the FDML laser, the instantaneous coherence length and hence the available imaging range is appr...
متن کاملHigh-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth
We report a newly developed high speed 1050nm spectral domain optical coherence tomography (SD-OCT) system for imaging posterior segment of human eye. The system is capable of an axial resolution at ~10 µm in air, an imaging depth of 6.1 mm in air, a system sensitivity fall-off at ~6 dB/3mm and an imaging speed of 120,000 A-scans per second. We experimentally demonstrate the system's capability...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 19 4 شماره
صفحات -
تاریخ انتشار 2014